
Safiri, S. et al. Global, regional and national burden of osteoarthritis 1990–2017: A systematic analysis of the Global Burden of Disease Study 2017. Ann. Rheum. Dis. 79, 819–828 (2020).
Google Scholar
Ackerman, I. N. et al. The substantial personal burden experienced by younger people with hip or knee osteoarthritis. Osteoarthr. Cartil. 23, 1276–1284 (2015).
Google Scholar
Zambon, S. et al. Role of osteoarthritis, comorbidity, and pain in determining functional limitations in older populations: European project on osteoarthritis. Arthritis Care Res. 68, 801–810 (2016).
Google Scholar
Carr, A. J. et al. Knee replacement. Lancet (Lond., Engl.) 379, 1331–1340 (2012).
Google Scholar
Ferket, B. S. et al. Impact of total knee replacement practice: cost effectiveness analysis of data from the Osteoarthritis Initiative. BMJ 356, 1131 (2017).
Google Scholar
Food, U. & Administration, D. Osteoarthritis: structural endpoints for the development of drugs, devices, and biological products for treatment guidance for industry. FDA. gov http://www.fda.gov/downloads/Drugs/GuidanceCmplianceRegulatoryInformation/Guidances/ucm071577.pdf (2018).
Saisho, Y. Metformin and inflammation: Its potential beyond glucose-lowering effect. Endocr. Metab. Immune Disord.s-Drug Targets 15, 196–205 (2015).
Google Scholar
Golay, A. Metformin and body weight. Int. J. Obes. 32, 61–72 (2008).
Google Scholar
Seifarth, C., Schehler, B. & Schneider, H. Effectiveness of metformin on weight loss in non-diabetic individuals with obesity. Exp. Clin. Endocrinol. Diabetes 121, 27–31 (2013).
Google Scholar
Björkhem-Bergman, L., Asplund, A. B. & Lindh, J. D. Metformin for weight reduction in non-diabetic patients on antipsychotic drugs: A systematic review and meta-analysis. J. Psychopharmacol. 25, 299–305 (2011).
Google Scholar
Harborne, L. R., Sattar, N., Norman, J. E. & Fleming, R. Metformin and weight loss in obese women with polycystic ovary syndrome: Comparison of doses. J. Clin. Endocrinol. Metab. 90, 4593–4598 (2005).
Google Scholar
Kim, S. A. & Choi, H. C. Metformin inhibits inflammatory response via AMPK–PTEN pathway in vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 425, 866–872 (2012).
Google Scholar
Łabuzek, K., Liber, S., Suchy, D. & Okopień, B. A successful case of pain management using metformin in a patient with adiposis dolorosa. Int. J. Clin. Pharmacol. Ther. 51, 517–524 (2013).
Google Scholar
Kalariya, N. M., Shoeb, M., Ansari, N. H., Srivastava, S. K. & Ramana, K. V. Antidiabetic drug metformin suppresses endotoxin-induced uveitis in rats. Invest. Ophthalmol. Vis. Sci. 53, 3431–3440 (2012).
Google Scholar
Berenbaum, F., Griffin, T. M. & Liu-Bryan, R. Review: Metabolic regulation of inflammation in osteoarthritis. Arthritis Rheumatol. 69, 9–21 (2017).
Google Scholar
Song, P. et al. Therapeutic applications of type 2 diabetes mellitus drug metformin in patients with osteoarthritis. Pharmaceuticals 14, 152 (2021).
Google Scholar
Lu, C.-H. et al. Combination COX-2 inhibitor and metformin attenuate rate of joint replacement in osteoarthritis with diabetes: A nationwide, retrospective, matched-cohort study in Taiwan. PLoS ONE 13, e0191242 (2018).
Google Scholar
Wang, Y. et al. Association between metformin use and disease progression in obese people with knee osteoarthritis: data from the Osteoarthritis Initiative—a prospective cohort study. Arthritis Res. Ther. 21, 127 (2019).
Google Scholar
Mohammed, M. M., Al-Shamma, K. J. & Jassim, N. A. Evaluation of the clinical use of metformin or pioglitazone in combination with meloxicam in patients with knee osteoarthritis; using knee injury and osteoarthritis outcome score. Iraq. J. Pharmac. Sci. 23, 13–23 (2014).
Chowdhury, T. T. et al. Dynamic compression counteracts IL-1β induced inducible nitric oxide synthase and cyclo-oxygenase-2 expression in chondrocyte/agarose constructs. Arthritis Res. Ther. 10, R35 (2008).
Google Scholar
Gosset, M. et al. Prostaglandin E2 synthesis in cartilage explants under compression: mPGES-1 is a mechanosensitive gene. Arthritis Res. Ther. 8, R135 (2006).
Google Scholar
Gabay, O. et al. Stress-induced signaling pathways in hyalin chondrocytes: Inhibition by Avocado-Soybean Unsaponifiables (ASU). Osteoarthr. Cartil. 16, 373–384 (2008).
Google Scholar
Fitzgerald, J. B. et al. Shear-and compression-induced chondrocyte transcription requires MAPK activation in cartilage explants. J. Biol. Chem. 283, 6735–6743 (2008).
Google Scholar
Wang, X.-Q. et al. A meta-analysis of core stability exercise versus general exercise for chronic low back pain. PLoS ONE 7, e52082 (2012).
Google Scholar
Gomez, R., Lago, F., Gomez-Reino, J., Dieguez, C. & Gualillo, O. Adipokines in the skeleton: Influence on cartilage function and joint degenerative diseases. J. Mol. Endocrinol. 43, 11–18 (2009).
Google Scholar
King, L. K., March, L. & Anandacoomarasamy, A. Obesity & osteoarthritis. Indian J. Med. Res. 138, 185–193 (2013).
Google Scholar
Arslan, I. et al. Underrecoding of knee osteoarthritis: A population-based study with electronic health records in Dutch general practice. Osteoarthr. Cartil. 29, S70–S71 (2021).
Google Scholar
Wong, L., et al. Accuracy and completeness of ICPC coding for chronic disease in general outpatient clinics. Hong Kong Practitioner (2010).
Yung, C.S.-Y. et al. Unicompartmental knee arthroplasties in Hong Kong: 15 years of experience in a teaching hospital. J. Orthop. Surg. 27, 2309499019850364 (2019).
Knowler, W. C. et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 346, 393–403 (2002).
Google Scholar
Li, Y., Liu, L., Wang, B., Wang, J. & Chen, D. Metformin in non-alcoholic fatty liver disease: A systematic review and meta-analysis. Biomed. Rep. 1, 57–64 (2013).
Google Scholar
Quinn, B. J., Kitagawa, H., Memmott, R. M., Gills, J. J. & Dennis, P. A. Repositioning metformin for cancer prevention and treatment. Trends Endocrinol. Metab. 24, 469–480 (2013).
Google Scholar
Kasznicki, J., Sliwinska, A. & Drzewoski, J. Metformin in cancer prevention and therapy. Ann. Transl. Med. 2, 2 (2014).
Corte, C. M. D. et al. Metformin increases antitumor activity of MEK inhibitors through GLI1 downregulation in LKB1 positive human NSCLC cancer cells. Oncotarget 7, 22 (2015).
Morgillo, F. et al. Results of the safety run-in part of the METAL (METformin in Advanced Lung cancer) study: a multicentre, open-label phase I–II study of metformin with erlotinib in second-line therapy of patients with stage IV non-small-cell lung cancer. ESMO Open 2, 31 (2017).
Google Scholar
Salvatore, T. et al. Can metformin exert as an active drug on endothelial dysfunction in diabetic subjects?. Biomedicines 9, 25 (2021).
Google Scholar
Salvatore, T. et al. Effects of metformin in heart failure: From pathophysiological rationale to clinical evidence. Biomolecules 11, 32 (2021).
Google Scholar
Salvatore, T. et al. Metformin: A potential therapeutic tool for rheumatologists. Pharmaceuticals 13, 63 (2020).
Google Scholar
Salvatore, T. et al. Metformin: An old drug against old age and associated morbidities. Diabetes Res. Clin. Pract. 160, 108025 (2020).
Google Scholar
Newman, S., Steed, L. & Mulligan, K. Self-management interventions for chronic illness. Lancet 364, 1523–1537 (2004).
Google Scholar
Zhang, Z., Kim, H. J., Lonjon, G. & Zhu, Y. Balance diagnostics after propensity score matching. Ann. Transl. Med. 7, 16–16 (2019).
Google Scholar
Ho, D., Imai, K., King, G. & Stuart, E. Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Polit. Anal. 15, 199–236 (2007).
Google Scholar
Therneau, T.M. Mixed Effects Cox Models [R package coxme version 2.2–16]. (2018).