• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

Hip and Knee News

News Resource About Hip, Knee and Orthopedic Surgery

medical care alert
  • Home
  • Hip Surgery
  • Knee Surgery
  • Resources
    • Hip and Knee Glossary
  • About/Contact

Gut permeability may be associated with periprosthetic joint infection after total hip and knee arthroplasty

by

  • Kapadia, B. H. et al. Periprosthetic joint infection. Lancet 387, 386–394 (2016).

    PubMed 

    Google Scholar 

  • Nishitani, K. et al. Quantifying the natural history of biofilm formation in vivo during the establishment of chronic implant-associated Staphylococcus aureus osteomyelitis in mice to identify critical pathogen and host factors. J. Orthop. Res. 33, 1311–1319 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • de Mesy Bentley, K. L. et al. Evidence of Staphylococcus aureus deformation, proliferation, and migration in canaliculi of live cortical bone in murine models of osteomyelitis. J. Bone Miner. Res. 32, 985–990 (2017).

    PubMed 

    Google Scholar 

  • The Group of Investigators for Streptococcal Prosthetic Joint Infection et al. The Not-So-Good Prognosis of Streptococcal Periprosthetic Joint Infection Managed by Implant Retention: The Results of a Large Multicenter Study. Clin. Infect. Dis. 64, 1742–1752 (2017).

  • Bloch, B. V., Shah, A., Snape, S. E., Boswell, T. C. J. & James, P. J. Primary hip and knee arthroplasty in a temporary operating theatre is associated with a significant increase in deep periprosthetic infection. Bone Jt. J. 99B, 917–920 (2017).

    Google Scholar 

  • Block, J. E. & Stubbs, H. A. Reducing the risk of deep wound infection in primary joint arthroplasty with antibiotic bone cement. Orthopedics 28, 1334–1345 (2005).

    PubMed 

    Google Scholar 

  • Springer, B. D. The diagnosis of periprosthetic joint infection. J. Arthroplas. 30, 908–911 (2015).

    Google Scholar 

  • McConoughey, S. J. et al. Biofilms in periprosthetic orthopedic infections. Future Microbiol. 9, 987–1007 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Zhu, H., Jin, H., Zhang, C. & Yuan, T. Intestinal methicillin-resistant Staphylococcus aureus causes prosthetic infection via ‘Trojan Horse’ mechanism: Evidence from a rat model. Bone Jt. Res. 9, 152–161 (2020).

    Google Scholar 

  • Krezalek, M. A. et al. Can methicillin-resistant Staphylococcus aureus silently travel from the gut to the wound and cause postoperative infection? Modeling the ‘trojan Horse Hypothesis’. Ann. Surg. 267, 749–758 (2018).

    PubMed 

    Google Scholar 

  • Alverdy, J. C., Hyman, N. & Gilbert, J. Re-examining causes of surgical site infections following elective surgery in the era of asepsis. The Lancet Infectious Diseases vol. 20 e38–e43 (Lancet Publishing Group, 2020).

  • Masters, E. A. et al. Evolving concepts in bone infection: redefining “biofilm”, “acute versus chronic osteomyelitis”, “the immune proteome” and “local antibiotic therapy”. Bone Res. 7, 1–18 (2019).

    CAS 

    Google Scholar 

  • Thwaites, G. E. & Gant, V. Are bloodstream leukocytes Trojan Horses for the metastasis of Staphylococcus aureus?. Nat. Rev. Microbiol. 9, 215–222 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Muraille, E., Leo, O. & Moser, M. Th1/Th2 paradigm extended: Macrophage polarization as an unappreciated pathogen-driven escape mechanism? Front. Immunol. 5, 603 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nishitani, K. et al. IsdB antibody-mediated sepsis following S. aureus surgical site infection. JCI Insight 5(19), e141164 (2020).

    PubMed Central 

    Google Scholar 

  • Löwik, C. A. M. M. et al. Obese patients have higher rates of polymicrobial and Gram-negative early periprosthetic joint infections of the hip than non-obese patients. PLoS ONE 14, e0215035 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Turner, J. R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 9, 799–809 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Fasano, A. & Shea-Donohue, T. Mechanisms of disease: The role of intestinal barrier function in the pathogenesis of gastrointestinal autoimmune diseases. Nat. Clin. Pract. Gastroenterol. Hepatol. 2, 416–422 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Arrieta, M. C., Bistritz, L. & Meddings, J. B. Alterations in intestinal permeability. Gut 55, 1512–1520 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fasano, A. et al. Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease. Lancet 355, 1518–1519 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, W., Uzzau, S., Goldblum, S. E. & Fasano, A. Human zonulin, a potential modulator of intestinal tight junctions. J. Cell Sci. 113, 4435–4440 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Fasano, A. All disease begins in the (leaky) gut: role of zonulin-mediated gut permeability in the pathogenesis of some chronic inflammatory diseases. F1000Research 9, 69 (2020).

    CAS 

    Google Scholar 

  • Shohat, N. et al. Hip and knee section, what is the definition of a periprosthetic joint infection (PJI) of the knee and the hip? Can the same criteria be used for both joints?: Proceedings of international consensus on orthopedic infections. J. Arthroplasty 34, S325–S327 (2019).

    PubMed 

    Google Scholar 

  • Peterson, D. A. & Jimenez Cardona, R. A. Specificity of the adaptive immune response to the gut microbiota. In Advances in immunology vol. 107 71–107 (2010).

  • Honda, K. & Littman, D. R. The microbiome in infectious disease and inflammation. Annu. Rev. Immunol. https://doi.org/10.1146/annurev-immunol-020711-074937 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ruff, W. E., Greiling, T. M. & Kriegel, M. A. Host–microbiota interactions in immune-mediated diseases. Nat. Rev. Microbiol. 2020(18), 521–538 (2020).

    Google Scholar 

  • Schluter, J. et al. The gut microbiota is associated with immune cell dynamics in humans. Nature 2020(588), 303–307 (2020).

    ADS 

    Google Scholar 

  • Joeri, T. et al. Increased levels of systemic LPS-positive bacterial extracellular vesicles in patients with intestinal barrier dysfunction. Gut 69, 191–193 (2020).

    Google Scholar 

  • Craig, S. & Alessio, F. Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases. Tissue Barriers 4, e1251384 (2016).

    Google Scholar 

  • Malíčková, M. et al. Fecal zonulin is elevated in Crohn’s disease and in cigarette smokers. Pract. Lab. Med. 9, 39–44 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Aleksandrova, K., Romero-Mosquera, B. & Hernandez, V. Diet, Gut Microbiome and Epigenetics: Emerging Links with Inflammatory Bowel Diseases and Prospects for Management and Prevention. Nutrients 9(9), 962 (2017).

    PubMed Central 

    Google Scholar 

  • Hernandez, C. J. et al. Disruption of the gut microbiome increases the risk of periprosthetic joint infection in mice. Clin. Orthop. Relat. Res. https://doi.org/10.1097/CORR.0000000000000851 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hasin, Y., Seldin, M. & Lusis, A. Multi-omics approaches to disease. Genome Biol. 18, 1–15 (2017).

    Google Scholar 

  • Davey, M. E. & O’toole, G. A. Microbial biofilms: From ecology to molecular genetics. Microbiol. Mol. Biol. Rev. 64, 847–867 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guégan, J.-F. The nature of ecology of infectious disease. Lancet Infect. Dis. 19, 1296 (2019).

    Google Scholar 

  • Medzhitov, R. Recognition of microorganisms and activation of the immune response. Nature 2007(449), 819–826 (2007).

    ADS 

    Google Scholar 

  • Zheng, D., Liwinski, T. & Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020(30), 492–506 (2020).

    Google Scholar 

  • Johnson, P. T. J., Roode, J. C. de & Fenton, A. Why infectious disease research needs community ecology. Science. 349(6252), 1259504 (2015).

    Google Scholar 

  • Shive, C. L., Jiang, W., Anthony, D. D. & Lederman, M. M. Soluble CD14 is a nonspecific marker of monocyteactivation. AIDS 29, 1263 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Rl, K. & Pa, T. Modulatory effects of sCD14 and LBP on LPS-host cell interactions. J. Endotoxin Res. 11, 225–229 (2005).

    Google Scholar 

  • Sánchez-Alcoholado, L. et al. Gut microbiota-mediated inflammation and gut permeability in patients with obesity and colorectal cancer. Int. J. Mol. Sci. 21, 1–20 (2020).

    Google Scholar 

  • Fasano, A. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol. Rev. 91, 151–175 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Fasano, A. et al. Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease. Lancet (London, England) 355, 1518–1519 (2000).

    CAS 

    Google Scholar 

  • Tajik, N. et al. Targeting zonulin and intestinal epithelial barrier function to prevent onset of arthritis. Nat. Commun. 11, 1995 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zak-Gołąb, A. et al. Gut microbiota, microinflammation, metabolic profile, and zonulin concentration in obese and normal weight subjects. Int. J. Endocrinol. 2013, 674106 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ciccia, F. et al. Dysbiosis and zonulin upregulation alter gut epithelial and vascular barriers in patients with ankylosing spondylitis. Ann. Rheum. Dis. 76, 1123–1132 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Fasano, A. Intestinal permeability and its regulation by Zonulin: Diagnostic and therapeutic implications. Clin. Gastroenterol. Hepatol. 10, 1096–1100 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, C. et al. Zonulin regulates intestinal permeability and facilitates enteric bacteria permeation in coronary artery disease. Sci. Rep. 6, 29142 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • ###
    Originally Appeared Here

    Filed Under: joint replacement, ORTHO NEWS

    Primary Sidebar

    Make It Easier to Get In and Out of Bed

    sleep to stand bed

    ORTHO NEWS

    Patients with late-stage knee OA incur high costs for nonoperative treatments before total knee arthroplasty

    A Road to Recovery After Knee Surgery: 6 Tips to Follow

    High costs of nonoperative treatment in the year before total knee replacement

    Joint replacement maker Stryker to create 600 new jobs in Cork

    Knee pain: When is it wise to go for knee replacement surgery?

    Myongji upgrades joint replacement precision with surgical robot < Hospital < 기사본문

    Are you planning to have a knee or hip replacement?  | McLaren Health Care News

    Ankle injuries: Q&A with Scripps orthopedic surgeon Jacob Braunstein

    Diversity in orthopedic leadership made minimal progress from 2007 to 2019

    2 Hartford HealthCare hospitals lauded for total hip, knee replacement

    Expert Article: CUVIS Joint, Your Robotic Doctor: Read About World’s First Active Robotic Knee Replacement System

    Orthopedic Institute of Southern Illinois celebrates growth of its surgery center | Healthcare

    Copyright © 2023 · DISCLAIMER: Nothing here constitutes legal, medical, or other advice; all content relates to an individual perspective only. A professional relationship with a physician, or with a lawyer is built over time, with mutual investment, trust, and respect. This site is not a substitute for that.
    ~ THIS DOMAIN IS FOR SALE ~

    Privacy Policy