
Kapadia, B. H. et al. Periprosthetic joint infection. Lancet 387, 386–394 (2016).
Google Scholar
Nishitani, K. et al. Quantifying the natural history of biofilm formation in vivo during the establishment of chronic implant-associated Staphylococcus aureus osteomyelitis in mice to identify critical pathogen and host factors. J. Orthop. Res. 33, 1311–1319 (2015).
Google Scholar
de Mesy Bentley, K. L. et al. Evidence of Staphylococcus aureus deformation, proliferation, and migration in canaliculi of live cortical bone in murine models of osteomyelitis. J. Bone Miner. Res. 32, 985–990 (2017).
Google Scholar
The Group of Investigators for Streptococcal Prosthetic Joint Infection et al. The Not-So-Good Prognosis of Streptococcal Periprosthetic Joint Infection Managed by Implant Retention: The Results of a Large Multicenter Study. Clin. Infect. Dis. 64, 1742–1752 (2017).
Bloch, B. V., Shah, A., Snape, S. E., Boswell, T. C. J. & James, P. J. Primary hip and knee arthroplasty in a temporary operating theatre is associated with a significant increase in deep periprosthetic infection. Bone Jt. J. 99B, 917–920 (2017).
Block, J. E. & Stubbs, H. A. Reducing the risk of deep wound infection in primary joint arthroplasty with antibiotic bone cement. Orthopedics 28, 1334–1345 (2005).
Google Scholar
Springer, B. D. The diagnosis of periprosthetic joint infection. J. Arthroplas. 30, 908–911 (2015).
McConoughey, S. J. et al. Biofilms in periprosthetic orthopedic infections. Future Microbiol. 9, 987–1007 (2014).
Google Scholar
Zhu, H., Jin, H., Zhang, C. & Yuan, T. Intestinal methicillin-resistant Staphylococcus aureus causes prosthetic infection via ‘Trojan Horse’ mechanism: Evidence from a rat model. Bone Jt. Res. 9, 152–161 (2020).
Krezalek, M. A. et al. Can methicillin-resistant Staphylococcus aureus silently travel from the gut to the wound and cause postoperative infection? Modeling the ‘trojan Horse Hypothesis’. Ann. Surg. 267, 749–758 (2018).
Google Scholar
Alverdy, J. C., Hyman, N. & Gilbert, J. Re-examining causes of surgical site infections following elective surgery in the era of asepsis. The Lancet Infectious Diseases vol. 20 e38–e43 (Lancet Publishing Group, 2020).
Masters, E. A. et al. Evolving concepts in bone infection: redefining “biofilm”, “acute versus chronic osteomyelitis”, “the immune proteome” and “local antibiotic therapy”. Bone Res. 7, 1–18 (2019).
Google Scholar
Thwaites, G. E. & Gant, V. Are bloodstream leukocytes Trojan Horses for the metastasis of Staphylococcus aureus?. Nat. Rev. Microbiol. 9, 215–222 (2011).
Google Scholar
Muraille, E., Leo, O. & Moser, M. Th1/Th2 paradigm extended: Macrophage polarization as an unappreciated pathogen-driven escape mechanism? Front. Immunol. 5, 603 (2014).
Google Scholar
Nishitani, K. et al. IsdB antibody-mediated sepsis following S. aureus surgical site infection. JCI Insight 5(19), e141164 (2020).
Google Scholar
Löwik, C. A. M. M. et al. Obese patients have higher rates of polymicrobial and Gram-negative early periprosthetic joint infections of the hip than non-obese patients. PLoS ONE 14, e0215035 (2019).
Google Scholar
Turner, J. R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 9, 799–809 (2009).
Google Scholar
Fasano, A. & Shea-Donohue, T. Mechanisms of disease: The role of intestinal barrier function in the pathogenesis of gastrointestinal autoimmune diseases. Nat. Clin. Pract. Gastroenterol. Hepatol. 2, 416–422 (2005).
Google Scholar
Arrieta, M. C., Bistritz, L. & Meddings, J. B. Alterations in intestinal permeability. Gut 55, 1512–1520 (2006).
Google Scholar
Fasano, A. et al. Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease. Lancet 355, 1518–1519 (2000).
Google Scholar
Wang, W., Uzzau, S., Goldblum, S. E. & Fasano, A. Human zonulin, a potential modulator of intestinal tight junctions. J. Cell Sci. 113, 4435–4440 (2000).
Google Scholar
Fasano, A. All disease begins in the (leaky) gut: role of zonulin-mediated gut permeability in the pathogenesis of some chronic inflammatory diseases. F1000Research 9, 69 (2020).
Google Scholar
Shohat, N. et al. Hip and knee section, what is the definition of a periprosthetic joint infection (PJI) of the knee and the hip? Can the same criteria be used for both joints?: Proceedings of international consensus on orthopedic infections. J. Arthroplasty 34, S325–S327 (2019).
Google Scholar
Peterson, D. A. & Jimenez Cardona, R. A. Specificity of the adaptive immune response to the gut microbiota. In Advances in immunology vol. 107 71–107 (2010).
Honda, K. & Littman, D. R. The microbiome in infectious disease and inflammation. Annu. Rev. Immunol. https://doi.org/10.1146/annurev-immunol-020711-074937 (2012).
Google Scholar
Ruff, W. E., Greiling, T. M. & Kriegel, M. A. Host–microbiota interactions in immune-mediated diseases. Nat. Rev. Microbiol. 2020(18), 521–538 (2020).
Schluter, J. et al. The gut microbiota is associated with immune cell dynamics in humans. Nature 2020(588), 303–307 (2020).
Google Scholar
Joeri, T. et al. Increased levels of systemic LPS-positive bacterial extracellular vesicles in patients with intestinal barrier dysfunction. Gut 69, 191–193 (2020).
Craig, S. & Alessio, F. Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases. Tissue Barriers 4, e1251384 (2016).
Malíčková, M. et al. Fecal zonulin is elevated in Crohn’s disease and in cigarette smokers. Pract. Lab. Med. 9, 39–44 (2017).
Google Scholar
Aleksandrova, K., Romero-Mosquera, B. & Hernandez, V. Diet, Gut Microbiome and Epigenetics: Emerging Links with Inflammatory Bowel Diseases and Prospects for Management and Prevention. Nutrients 9(9), 962 (2017).
Google Scholar
Hernandez, C. J. et al. Disruption of the gut microbiome increases the risk of periprosthetic joint infection in mice. Clin. Orthop. Relat. Res. https://doi.org/10.1097/CORR.0000000000000851 (2019).
Google Scholar
Hasin, Y., Seldin, M. & Lusis, A. Multi-omics approaches to disease. Genome Biol. 18, 1–15 (2017).
Davey, M. E. & O’toole, G. A. Microbial biofilms: From ecology to molecular genetics. Microbiol. Mol. Biol. Rev. 64, 847–867 (2000).
Google Scholar
Guégan, J.-F. The nature of ecology of infectious disease. Lancet Infect. Dis. 19, 1296 (2019).
Medzhitov, R. Recognition of microorganisms and activation of the immune response. Nature 2007(449), 819–826 (2007).
Google Scholar
Zheng, D., Liwinski, T. & Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020(30), 492–506 (2020).
Johnson, P. T. J., Roode, J. C. de & Fenton, A. Why infectious disease research needs community ecology. Science. 349(6252), 1259504 (2015).
Shive, C. L., Jiang, W., Anthony, D. D. & Lederman, M. M. Soluble CD14 is a nonspecific marker of monocyteactivation. AIDS 29, 1263 (2015).
Google Scholar
Rl, K. & Pa, T. Modulatory effects of sCD14 and LBP on LPS-host cell interactions. J. Endotoxin Res. 11, 225–229 (2005).
Sánchez-Alcoholado, L. et al. Gut microbiota-mediated inflammation and gut permeability in patients with obesity and colorectal cancer. Int. J. Mol. Sci. 21, 1–20 (2020).
Fasano, A. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol. Rev. 91, 151–175 (2011).
Google Scholar
Fasano, A. et al. Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease. Lancet (London, England) 355, 1518–1519 (2000).
Google Scholar
Tajik, N. et al. Targeting zonulin and intestinal epithelial barrier function to prevent onset of arthritis. Nat. Commun. 11, 1995 (2020).
Google Scholar
Zak-Gołąb, A. et al. Gut microbiota, microinflammation, metabolic profile, and zonulin concentration in obese and normal weight subjects. Int. J. Endocrinol. 2013, 674106 (2013).
Google Scholar
Ciccia, F. et al. Dysbiosis and zonulin upregulation alter gut epithelial and vascular barriers in patients with ankylosing spondylitis. Ann. Rheum. Dis. 76, 1123–1132 (2017).
Google Scholar
Fasano, A. Intestinal permeability and its regulation by Zonulin: Diagnostic and therapeutic implications. Clin. Gastroenterol. Hepatol. 10, 1096–1100 (2012).
Google Scholar
Li, C. et al. Zonulin regulates intestinal permeability and facilitates enteric bacteria permeation in coronary artery disease. Sci. Rep. 6, 29142 (2016).
Google Scholar